Large-scale Multi-label Learning with Missing Labels

نویسندگان

  • Hsiang-Fu Yu
  • Prateek Jain
  • Purushottam Kar
  • Inderjit S. Dhillon
چکیده

The multi-label classification problem has generated significant interest in recent years. However, existing approaches do not adequately address two key challenges: (a) scaling up to problems with a large number (say millions) of labels, and (b) handling data with missing labels. In this paper, we directly address both these problems by studying the multi-label problem in a generic empirical risk minimization (ERM) framework. Our framework, despite being simple, is surprisingly able to encompass several recent labelcompression based methods which can be derived as special cases of our method. To optimize the ERM problem, we develop techniques that exploit the structure of specific loss functions such as the squared loss function to obtain efficient algorithms. We further show that our learning framework admits excess risk bounds even in the presence of missing labels. Our bounds are tight and demonstrate better generalization performance for low-rank promoting trace-norm regularization when compared to (rank insensitive) Frobenius norm regularization. Finally, we present extensive empirical results on a variety of benchmark datasets and show that our methods perform significantly better than existing label compression based methods and can scale up to very large datasets such as a Wikipedia dataset that has more than 200,000 labels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Scale Multi-Label Learning with Incomplete Label Assignments

Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-...

متن کامل

An Efficient Large-scale Semi-supervised Multi-label Classifier Capable of Handling Missing labels

Multi-label classification has received considerable interest in recent years. Multi-label classifiers have to address many problems including: handling large-scale datasets with many instances and a large set of labels, compensating missing label assignments in the training set, considering correlations between labels, as well as exploiting unlabeled data to improve prediction performance. To ...

متن کامل

Improving Multilabel Classification by Avoiding Implicit Negativity with Incomplete Data

Many real world problems require multi-label classification, in which each training instance is associated with a set of labels. There are many existing learning algorithms for multi-label classification; however, these algorithms assume implicit negativity, where missing labels in the training data are automatically assumed to be negative. Additionally, many of the existing algorithms do not h...

متن کامل

Leveraging Distributional Semantics for Multi-Label Learning

We present a novel and scalable label embedding framework for large-scale multi-label learning a.k.a ExMLDS (Extreme Multi-Label Learning using Distributional Semantics). Our approach draws inspiration from ideas rooted in distributional semantics, specifically the Skip Gram Negative Sampling (SGNS) approach, widely used to learn word embeddings for natural language processing tasks. Learning s...

متن کامل

Multi-label learning with missing labels for image annotation and facial action unit recognition

Many problems in computer vision, such as image annotation, can be formulated as multi-label learning problems. It is typically assumed that the complete label assignment for each training image is available. However, this is often not the case in practice, as many training images may only be annotated with a partial set of labels, either due to the intensive effort to obtain the fully labeled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014